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Abstract

A mechanistic model for bubble coalescence in turbulent flow is presented. The model is developed in
two steps, which are essentially separable. In the first, expressions put forward earlier for the collision
frequency and coalescence probability of equal bubbles during turbulence-driven, high-Reynolds-number
collisions are extended to unequal bubbles and to take account of bubble—turbulence and bubble-bubble
interactions. In the second, the resulting expression for the coalescence rate is used to derive source terms in
the transport equations for the moment densities of the bubble-diameter distribution, which can readily be
evaluated locally within a CFD code. The result is an extremely compact framework capable of providing
predictions of the evolution of bubble size distributions in space and time at the expense of only two ad-
ditional scalar transport equations. To provide an experimental validation of the model, some data on the
bubble size evolution along a pipe flow under microgravity conditions have been used. Microgravity ex-
periments on gas—liquid bubbly pipe flows have been carried out during parabolic flights in aircraft. Bubble
diameter distributions have been determined from high speed video recording and image processing. In the
absence of gravity, collisions between bubbles smaller than the integral length scale of turbulence are
primarily due to turbulence. The results from the calculation are in good agreement with the experimental
data. The model is then used to predict the influence of the void fraction, the bubble size at the pipe inlet
and the liquid mean velocity on the coalescence rate. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Turbulent bubbly flows occur frequently in industrial and natural systems. Important examples
can be found in the petroleum, energy-producing and chemical industries. The design of such
systems requires the accurate prediction of pressure drop and wall heat transfer, both of which
strongly depend on the spatial distribution of the phases and on the interfacial morphology
(bubble size). In gas-liquid reactors the role played by bubbles is a central one, determining the
interfacial area available for mass transfer. Together with pressure variation, break-up and mass
transfer, coalescence is responsible for changes in bubble sizes. The present paper will focus on the
modelling of bubble growth due to coalescence in a turbulent flow, a situation for which no
satisfactory modelling currently exists. This lacuna is understandable in view of the complexity of
the collision and coalescence processes.

The coalescence of two bubbles can occur when they are brought together by the surrounding
liquid flow or by gravitational or other body forces. The duration of such interactions is limited
and coalescence will occur only if the intervening film can drain to a sufficiently small thickness to
rupture in the time available. At least three sources of relative bubble motion can be distinguished:

(1) motion induced by turbulence in the continuous phase;

(i1) motion induced by mean-velocity gradients;

(iii) buoyancy (or, more generally, body-force)-induced motion, arising from different bubble

slip velocities, wake interactions or helical/zigzag trajectories.

In many systems bubbles, though much larger than the Kolmogorov eddies, are smaller than the
length scales of the energy-containing eddies and source (ii) is then negligible in comparison with
source (i) (Appendix A). Sources (i) and (iii), however, are generally both significant, which
greatly complicates the construction and validation of coalescence models. The present study is
restricted to the development of models for the contribution of turbulence to coalescence in the
absence of significant body forces, which is considered an essential precursor to a more general
model incorporating both turbulence and body forces.

A model is developed for bubble coalescence in the limit of high collision Reynolds numbers, '
leading to transport equations for scalar quantities characterizing the bubble size distribution.
The modelling framework is essentially that set out by Chesters (1991), generalized to take ac-
count of a distribution of bubble sizes. As transportable scalars the moments of the distribution
are chosen. The considerations are worked out in detail for a log-normal distribution, for which
only two moments are required and which proved adequate to describe the experimental data.

The first approximation for the collision frequency in the absence of particle slip or hydro-
dynamic interaction (Kuboi et al., 1972) is refined to take account of bubble slip and of the
hydrodynamic interaction arising from separation-dependence of the virtual mass. The expres-
sions for the film-drainage and bubble-interaction times put forward by Chesters (1991) are re-
fined and extended to unequal bubbles.

An experimental validation of the model under microgravity conditions is also presented. The
absence of gravity satisfies the assumption of the model, that bubble collisions are induced by
velocity fluctuations due to turbulence in the liquid flow. In many practical applications, other

! Corresponding to a bubble cut-off diameter of around 0.5 mm in water if a cut-off Reynolds number of order 10 is
taken.
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bubble-collision sources exist, such as the bubble relative motion induced by mean velocity
gradients in the liquid phase and differences in bubble rise velocities. A unique situation in
which it is possible to isolate turbulence-induced coalescence is in bubbly flow under microg-
ravity conditions. Drift and wake-induced collisions are nearly absent under these conditions.
Likewise, mean-velocity gradients play a small role, since the velocity is almost homogeneous in
the centre region of the tube, where most of the bubbles can be found (Kamp et al., 1995;
Kamp, 1996). In addition, the approximation of spherical bubbles is a satisfactory one up to
much larger bubble diameters.

Section 2 introduces the use of moment densities, S,, of the bubble-diameter distribution and
their application to the practically relevant and analytically simple log-normal distribution. The
transport equation for S, is derived and the relation examined of the coalescence source term to
collision frequencies and coalescence probabilities. Section 3 then addresses the modelling of co-
alescence probability, determined in turn by bubble-interaction and film-drainage times. Expres-
sions are derived for these times as a function of collision conditions and bubble-diameter ratio.
Section 4 extends the expression of Kuboi et al. (1972) for collision rates to take account of slip and
hydrodynamic interaction. This expression is then combined with that for coalescence probability
to obtain the final expression for the coalescence source term in the transport equation for §,. In
Section 5, the experimental data used for the validation of the model are presented. The axial
evolution of bubble sizes in a turbulent bubbly pipe flow under microgravity conditions is obtained
from high speed video pictures of the flow taken at the inlet and the outlet of the pipe through two
visualization sections. After image processing, bubble diameter probability density functions (pdfs)
at the pipe inlet and outlet are constructed. The results of the model are compared to the exper-
imental data in Section 6. Finally a parametric study is conducted which shows how the coalescence
rate in a bubbly pipe flow under microgravity conditions varies with the void fraction, the bubble
size at the pipe inlet and the liquid flow rate. Conclusions and perspectives are given in Section 8.

2. Bubble-diameter distribution and transport of moment density
2.1. The approximation of a log-normal distribution

The following derivations apply to bubbly gas-liquid mixtures although similar considerations
could, with minimal modifications, be applied to droplet transport. If small air bubbles are in-
jected into a turbulent flow, coalescence leads to a non-homogeneity in the bubble sizes. The pdf
for the bubble diameter, * d, often proves to be well represented by a log-normal distribution law
although other distributions (gamma, bi-modal) have been reported as well (Piret, 1980). In what
follows we assume a log-normal distribution function, but any other distribution depending on a
limited number of parameters could be chosen. The pdf for diameter d is then

P(d) = (Mz_n&d)*l exp [— {In(d/dy)}? /(25—2)], (1)

where dy is a characteristic diameter and ¢ a width parameter.

2 To allow for non-spherical bubbles d may be defined as (6V/ n)l/ 3, where ¥ denotes the bubble volume.
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The physical significance of this pdf and of the diameter dy, becomes clear if bubble diameters are
expressed in relative rather than absolute terms. Defining a measure of relative bubble size, D, by

D = ll’l(d/d()())
(1) becomes

P(d) = (\/ﬁ&d)il exp [— D2/<26—2)] (2)
Since furthermore

P(d)d(d) = P(D)dD = P(D)d(d)/d

(both the LHS and RHS representing the number of bubbles per unit volume in a given size
interval), (2) yields

P(D) = (\/%a) Lexp [—Dz/ (2&2)}

corresponding to a normal distribution of D-values, with variance 6. The maximum value of P(D)
is thus obtained when D = 0, corresponding to d = dy. From symmetry it also follows that dy
represents the number-median diameter, the number of bubbles for which d < dy, being the same
as that for which d > dy.

2.2. The transport equations for the moment densities

The volumetric number density of bubbles with diameter d is P(d)n, where n denotes the
number of bubbles per unit volume. Ignoring bubble diffusion, the transport equation for P(d)n in
phase-space * is given by (Randolph and Larson, 1971; Achard, 1978)

0 0
where it is assumed here that at any instant P(d) depends only on one internal coordinate which is the
bubble diameter, d. The “velocity” G along this internal coordinate is then a bubble growth velocity
G = d(d)/dt due to pressure variation, mass transfer, etc. v(d) = dx(d)/d¢ is the velocity of dis-
placement of a bubble of size d. The source or sink term ¢(x, d, ¢) represents the contribution to P(d)n
of change in the number of particles, due to bubble break-up, coalescence, nucleation or collapse.
Eq. (3) implicitly assumes that 7 is a well-defined quantity which can be established by counting
the number of bubbles present at any instant within a region which is small compared with the
length scales of the flow. In turbulent flows this condition is virtually never satisfied and some
kind of averaging procedure is required which must, in addition, be compatible with that applied
to other variables. This is an important but difficult issue on which various approaches have been
proposed. Experimentally, ensemble averaging is used to arrive at n. A consistent framework
based on ensemble averaging of the two-phase equations, including the present model of co-
alescence, has been set out in the recent thesis of Hill (1998).

[P(d)n] +V - [P(d)nv(d)]

3 A space consisting of the three spatial coordinates called “external” coordinates, together with any “internal”
coordinates, such as bubble diameter, composition, etc.
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Eq. (3) is a traditional Liouville-Bolzmann equation. Solving it can turn out to be a difficult job
since its solutions have to be obtained in the phase space, which is essentially four-dimensional.
We therefore secek a transformation which will average (2) over the internal-coordinate values and
thereby reduce the dimensionality to that of a transport equation in physical space.

The yth moment density, S,, can be defined as

S, =n / P(d)d d(d). (4)

The moment densities are seen to be intensive scalar quantities which quantify the dispersion of
the gas phase. Thus, S is the bubble concentration #, S /n the mean diameter, S, is proportional
to the specific interfacial area o;(S, = 40;/7), S5 to the gas fraction o(S; = 6a/7), etc. There is,
however, no restriction to integer values of y. As transportable scalar quantities, the moment
densities have the appeal that (in the absence of changes in d or n) they are conserved during the
mixing of particle (in the present case, bubble) populations. The moment densities are seen to be
related to the mean diameters d,

dpd ) S 1/(p—q)
b R _(5Y

Jo P(d)did(d) \'S,
The case when p = 3 is particularly important
S, 1/(3=y) 6o\ /G

The first step in the deriving the transport equations for S, is to multiply the terms in (3) by 4’ and
integrate over all particle sizes. Since the limits of integration are independent of ¢ and x the
differential operators 0/0t and V may be taken outside the integrals, yielding

a%{” /0 h P(d)d“f'd(d)} V. {n /0 xP(d)v(d)d”d(d)} +n /0 ) %{G(d)P(d)}d"’d(d)
= ¢,(x,d,1), (6)

where ¢, is a source term or a sink term due to bubble coalescence, break-up, nucleation or
collapse. The second term of the LHS on (6) can be rearranged by defining a weighted average
bubble velocity, v,

L P@vdad()
CJo P(d)drd(d)
Integrating by parts, the integral in the third term on the LHS of (6) becomes:

Om 0 (Gd)P(d)}dd(d) = GA)P)d 5 — / " P@)Gd)d d(d).

For the log-normal distribution, P(d) — 0 more rapidly than any power of dasd — 0 or d — oo
and the first term on the RHS consequently vanishes. This will also be true of any other physically
realistic pdf. Finally, defining a weighted average bubble growth velocity, G,
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and making use of (4), (6) can be written as

oS,

a—t’ + V- (v,S,) = 9G,_1S,-1 = o, (7)

If the source term, can be modelled, and if v, and G, are known, then (7) can be solved for S,.
In order to evaluate ¢,, P(d) has to be known. Since according to (1), P(d) only depends on

two parameters, dyp and 4, it is uniquely defined by a combination of two moments S,. This

follows from substitution of (1) in (4)
S, = ndj, exp(6°7%/2). (8)

The bubble number density can be eliminated from this equation using the fact that S; = 6o/n so
that

6o R
n= iy exp(—967%/2). 9)

Combination of (8) and (9) yields

60 52

5, = %%m{%W—%} (10

T

Thus the distribution width ¢ follows from, for example, S| and S,

o)

and d, can then be calculated by inversion of (10) once 6 is known from (11). Hence simultaneous
solution of (7) for two different values of 7, permits one to obtain the spatial variation of the pdf.

The critical issue in the use of the transport Eq. (7) is the modelling of the source term ¢,.
Below we consider the case in which ¢, is uniquely determined by coalescence resulting from
turbulence-induced bubble collisions.

2.3. Modelling of the coalescence source term

The source term ¢, is a measure of how §, is modified by the coalescence of two bubbles. If a
bubble with diameter d; coalesces with a bubble of diameter ¢, then a new bubble results with
diameter (d; + dg)l/ ?. The decrease in S, due to one such coalescence process per unit volume is
therefore given by

AS, = (&} + )" —dl — d.

Denoting by ¢(d, dy) d(d)) d(d,) the number of collisions per unit time and volume of bubbles for
which d, <d < d,; + d(d;) with bubbles for which d, <d < d, + d(d,) and denoting by P.(d;, d,) the
probability that the film drainage process accompanying a collision results in coalescence, the
coalescence rate (number of coalescence events per unit time and volume) is given by
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1 o0 o0
: / / Pudy, do)e(dy, dy) d(dy) d(dn),
=0 Jar=0

the factor 1/2 allowing for the fact that the double integral counts each collision twice.
The source term of Eq. (7) is accordingly given by

1 > [>
¢ =5 / / P.(dy,dr)AS,c(dy,dr)d(dy)d(d>)
& =0 Jdr=0 (12)
1 > [> ﬁ -
=3 / / P.(d\,d,) [(di LY —d - dz*] c(dy, db)d(dy)d(ds).
d=0 Jdr=0

The separation of the bubble interaction process into collision and film drainage reflects the
conceptual framework usually employed to describe coalescence processes, dividing the flow into
an external part (the flow which drives the bubbles together) and an internal part (the flow in the
liquid film between the surfaces of the two approaching bubbles) (Coulaloglou and Tavlarides,
1977; Chesters, 1991).

The following two sections address the modelling of coalescence probability and collision rate,
respectively.

3. The modelling of coalescence
3.1. Modelling approach

As a preliminary, consider the collision of equal, initially spherical, bubbles moving towards
each other at equal speeds, V/2, along the line joining their centres in otherwise stagnant liquid in
the limit of large Reynolds numbers but small Weber numbers. # Viscous dissipation is then minor
and to the first approximation the energy of the system is conserved during the collision. At large
separations bubble deformation is negligible and, neglecting the kinetic energy of the gas, that of
the liquid, Cyn(ped? /6)V?, is then constant (p; liquid density, C,p, coefficient of virtual mass). As
shown in Section 3.2, C,,, rises from 0.5 at large separations to 0.803 at small ones and V" will
diminish accordingly.

At sufficiently close quarters the bubbles begin to flatten, thereby increasing their surface area
and storing a corresponding proportion of the system’s kinetic energy as surface free energy. An
analysis of this phase of the interaction can be made if the bubble surfaces are approximated as
consisting of a plane region bounded by a spherical one (Fig. 1). The interaction time, f, defined
here as the interval between the onset of film formation and the moment at which the bubbles
begin to rebound, can then be derived.

Within this picture, coalescence occurs if 73 < t;, where ¢y denotes the time required for film
drainage from the onset of flattening to film rupture. A first approximation to #4 is provided by
numerical results on film drainage for constant bubble approach velocity (Chesters and Hofman,
1982a,b), allowing an approximate expression to be derived for the ratio #4/#.

4 A situation obtainable in low-viscosity liquids for a range of d and V-values.



1370 A.M. Kamp et al. | International Journal of Multiphase Flow 27 (2001) 1363—1396

Ry
@ R :

1
' B ——
'

- Ry +Ryz

€

Fig. 1. Approach and deformation of two bubbles.

The following two sections extend this framework to take account of the effects of unequal
bubble diameters. The resulting expression for #3/¢ is then generalized to unrestricted Weber
numbers and tested against data for bubble coalescence at a free surface. The application to the
prediction of coalescence probability during turbulence-driven collisions is postponed until
Section 4.2.

3.2. Interaction time

Consider a collision between bubbles of radii R; and R, moving with velocities U; and U, in the
x-direction (the line joining their centres) in an unbounded liquid at rest (Fig. 1), under conditions
of large collision Reynolds number but small Weber number (implying, as will be seen, that the
radius of the resulting film is much smaller than the radii of the bubbles). Neglecting work done
against viscous dissipation or body forces during the collision and approximating the system as
isothermal, the increase in surface free energy, AF, accompanying deformation is balanced by a
corresponding reduction in the kinetic energy of the system, —AFE}

AE, + AF = 0. (13)

For an isothermal system the free energy per unit area of surface is simply the surface tension so
that

AF = oAAd, (14)

where o is the surface tension and A4 is the increase in the surface area of the bubbles due to
deformation. Below, expressions are derived for £, and A4 as a function of bubble separation,
permitting the bubble motion and resulting interaction time to be quantified.

3.2.1. Kinetic energy associated with the bubble motion

For surfactant-free systems the shear stress exerted by the bubble surface on the surrounding
liquid is negligible. Neglecting viscous dissipation and confining attention for the moment to
spherical bubbles, the liquid motion should then be well approximated as a potential flow. The
kinetic energy of the potential flow associated with translating spheres of radii R; and R, is given
by (Lamb, 1932)

1
E; :E(LUf — 2MU, U, + NU3), (15)

where the geometrical coefficients L, M and N are given by series:
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;2 SR+ 3RIR; 3RSRS
—Znp,
3 PR BRI-1)S
RR3 3R3R3 3RORS
M = 2rp, 132{14— 3 2+ T B2 3+...}
l gi(l—g) gigs(l—g) (1 —g)

2 R3R3 RRS
N:gﬂpLR3{1+3 1”2 3 1772 +}

Pel  Pgl(l—g) g

with
Nh=1-RJl, L=R/f, fi=1-R/(-1), fa=R/f,
gi=1—-R}/l, &2 =Ri/g1, &s=1-R}/(I— &), & =R5/g

and /(= x; — x,) the distance between the bubble centres.
Numerical evaluation of the coeflicients L, M and N indicates that these tend to finite values as
the sphere separation becomes small

L—>L0, M—>M0, N—>N0 asl/(R1+R2)—l<<1

In the symmetrical case (R; =R, =R, U, = —U, = U/2),L = N and (15) reduces to E; = (L + M)
(U/2)*, so that Cyy = 3(L + M) /4nR%p, . The variation of Cy,, with sphere separation for this case
is shown in Table 1.

The insensitivity of E; to the exact sphere separation indicates that the contribution to E; of the
flow in the narrow film between the spheres is small (even though high velocities are attained there
at small separations). Since for deforming bubbles at small Weber numbers this is the only region
in which the flow (and hence kinetic energy) differs from that for two spheres, it may be concluded
that (15) also applies to deforming bubbles, with L,M and N approximated by their small-
separation values Lg, My, Ny

1
E; :E(LOUf—zMOUleJrNOU;). (16)

Table 1
Coefficient of virtual mass of equal spheres as a function of the distance, /, between their centres

Z/R - 2 CV]’I]

00 0.5

2 0.524

1 0.559

1/2 0.608

1/4 0.660

1/8 0.705

1/16 0.740

1/32 0.764

1/128 0.790

0 0.803
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The forces Fi and F; (reckoned positive in the direction from bubble 1 to bubble 2), exerted by the
flow on the bubbles may now be calculated from the kinetic energy via Lagrange’s equations

B
"Tdrou, ox? P dtoU, oxy

For flattening bubbles, the forces F| and F> arise to counteract the deviation of the film pressure
(acting as a spring, pushing the bubbles apart) from that for spheres. The sum of these forces is
zero (since OE;/0x, = OE;/0x;), so that

& (o~ MU, + (o~ M) = 0

and after integration
(L() — M(])U1 + (N() — Mo)Ug = constant (17)

(17) can be re-written as

m1U1 +I112U2 = (Wll + I’I’Iz)U()7 (18)
where
LoNo — M2 LoNo — M2
m =———= mMy=—-—
No — My Lo — My

and U is a constant representing a weighted average of U; and U,. Eq. (18) has the same form as

the equation of conservation of momentum governing the interaction of particles of mass m; and

my and indeed for equal sized bubbles m; and m, reduce to the virtual masses (m; =

my = Ly + M,). Unlike a real mass, however, m; can be negative (if R /R, is less than about 0.4).
The bubble velocities can now be expressed as

ny m

vV, U,=U)—
my + my my + my

U =U)+ v,

where V denotes the relative velocity, U, — U,. Substitution of these expressions into (16) yields,
after re-arrangement,

niyniy
2E, = (Lo — 2My + N))U? + ——— 1
w = (Lo o+ No) 0+m1+m2
or
LoNy — M?
2E, = (Ly —2My + N)U? + ——— 0?2 19
v = (Lo 0+ 0)0+L0—2M0+N0 ) (19)

which expresses the total kinetic energy of the system as the sum of a constant term, associated
with the velocity U, and a term associated with the relative motion of the bubbles, only the latter
being available for bubble flattening. Eq. (19) differs from the corresponding equation for real
interacting particles
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myny 2

2E, = U?
= (my + my) 0+m1+m2

only with regard to the coefficient of the first term. °
Ignoring the constant first term, (19) may be written

1 LoNg— M2, oy 5 (VN
E=-—20 "0 y :Cvm<—)d —, 20
YT 2Ly —2My + N, 6 /ea\ 2 (20)

where d,q is the equivalent diameter which governs the film drainage rate (Section 3.3)

2d,d,
dog = ) 21
A+ d (21)
C,n 18 a virtual mass coefficient defined as
LN —M?* 1
n=—— — 22
c L'—2M'+N'd3, (22)
where

12L 3d; 3d; d)d)
L=""=d1+ -+ 2 3+o(—1182> :
TpL (dl + 2d2) (2d1 + 3d2) )

pr =12 _ <E+O<d;}§)> 4ids 3
TPy 72 [ (d +d>)

12N, 3d? 3d? d’d)
N="T—a1+ —+ 1 3+0<1TZ> :
Tch (2d1 + dz) (3d1 + 2d2) l

Table 2 presents the variation of C,,, with bubble diameter ratio. C,,, decreases monotonically
with increasing d>/d,. The limiting result (Cyy,) dodi—o0 = 1/4(Cym) dy/d—1 Can be deduced from
symmetry considerations.

In the ensuing computations the terms of order (dd»/12)’ and higher are neglected, the re-
sulting error being only a few percent (for bubbles of equal diameter, for example, the resulting
value of C,p, is then 0.785, compared with the exact value of 0.803).

An expression of the available kinetic energy for bubble deformation has also been obtained by
Svendsen and Luo (1996). In this study the authors have, however, only given an estimated value
of the virtual mass coefficient. They found that C,,, is close to one for bubbles of equal diameter.

3.2.2. Increase in surface area due to bubble flattening
Provided the radius of film, a (Fig. 2) is much smaller than the radii of the bubbles (a condition
satisfied, as will be seen, at small Weber numbers),

5 As illustrated, for example, by the special case R; = Ry, for which mj + my = 2(Ly + My) while Ly — 2M, +
No = 2(Lo — My).
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Table 2
Diameter-ratio dependence of the coefficient of virtual mass in the limit of small sphere separation
dr/d, Cym
1 0.803
1.09 0.796
1.19 0.775
1.41 0.704
2 0.539
4 0.341
16 0.231
256 0.203
00 0.201
a< R, i=1.2 (23)

the centre surface of the film is spherical with radius of curvature, R, given by

R— 2R\R),
IS}

(Abid and Chesters, 1994: though for interacting drops, the derivation is equally applicable to

bubbles). The primes serve to distinguish the instantaneous bubble radii (which must increase

slightly during deformation in order to conserve bubble volume) from their initial values, R, and

R,. If the thickness of the film is neglected and the bubbles approximated as spherical outside the

film, expressions for the increases in bubble surface area, A4; and AA4,, as a function of the

Fig. 2. Collision of bubbles with radii R, and R,.
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distance between their centres, R; + R, — z, may be derived from simple geometrical consider-
ations, making use of (23):

AA %475 R/z—Rz——RR—RR—zRIR
! ( ! ! 4(R1—|—R2)( ! 2 ! 2) ’
AA z47t RIZ—RZ——RR—RR—ZR/R .

The values of R and R’ follow from volume conservation:

4 4 . h?
Sk = gn[Rg LR, )~ (3R h)],
4 4 s h: o n?
gTER; = §7T|:R23 _Zz(3R2 — hz) +Z(3R — h):|,

where A, h, and & are defined in Fig. 2 (A + h, = z). Elimination of R} and R, now gives:

77522 7'IZZ2

Since the film radius a is related to z as z = a®/Req (With deq = 2R, given by (21)), (24) can also be

written as

M_ M _(a

Ao 8TR2 T \ 2Ry
indicating that for unequal bubbles A4 is the same as for equal bubbles of radius R.q. Substitution
of (24) in (14) now gives

2

AF ~ 7'[0'%. (25)

3.2.3. Equation of motion
The energy conservation equation (13) during the collision process yields

Ew=E.+F,

Ejo being the initial kinetic energy for the bubbles at the moment that their surfaces first touch.
Combination of (20) and (25) with (13) now yields

1/2
dz 1202>
V="c=pl1-——_ 26

dr 0< chvmdng()2> ) ( )

5 being the relative velocity of the bubbles at the onset of deformation. As a first approximation
the interaction time, £, is defined as the interval between the moment at which the bubbles touch
(z=10) and that at which they begin to separate (corresponding to dz/ds = 0). Integration of
Eq. (26) then gives
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2\ 12
j = [ PLCmdeg (27)
4 3¢ ’

in which C,,, is given by (22).
3.3. Drainage time

The problem of film drainage between two colliding bubbles has been extensively investigated
for the case where the Weber number based on the equivalent diameter and the relative velocity ¥}
is much smaller than unity (Lee and Hodgson, 1968; Kirkpatrick and Lockett, 1974; Chesters and
Hofman, 1982b; Heng-Kwong and Koch, 1994)

PL Vozdeq
Weeq = 2% < 1.

Chesters and Hofman obtained numerical solutions for the case of constant approach velocity.
After flattening a dimple is formed, the location of the minimum film thickness, /., moving
radially outward with time, while the drainage rate, —dh,,;,/dt, stabilizes at a constant value of the
order of 10% of the bubble approach velocity. Even without taking account of the de-stabilizing
effects of van der Waals forces in the final stages of drainage, the drainage time ¢, is thus predicted
to be finite. The results show that ¢4 varies as pLVodezq /o. For a given diameter ratio, # varies as
(prdy,/ )" and 14/t consequently varies as (Weeq)'/?.

Two problems arise in using these results to obtain an expression for the drainage time #3. The
first is that the approach velocity is not in reality constant, as discussed in the preceding section.
For sufficiently small Weber numbers, however, the approximation of constant approach velocity
is acceptable since 74 < #; and drainage is consequently completed before the approach velocity
has diminished significantly.

The second problem concerns the choice of “the onset™ of film drainage. A definition consistent
with the analysis of the interaction time ¢ (Section 3.2) would be the onset of flattening. However,
in contrast with the simplified model used to derive #, a sharp onset of flattening is not present in
reality. Rather, a gradual increase occurs from negligible deformation at large bubble separations
to complete flattening when the pressure at the film centre attains the value of 45/d,. Somewhat
arbitrarily, therefore, the onset of drainage is defined, following Chesters (1991), as the moment at
which the pressure in the film equals 2¢/d.,, which is half of the pressure required to obtain
complete film flattening. This corresponds to a transformed film minimum thickness,
I = (2hmin/deqWeeq) of about 0.13. The ensuring transformed time required for 4!, to become
zero is then is found to be £ = 2t4V}/deqWeeq ~ 0.5. In a dimensional representation, the drainage
time between two bubbles of diameters d; and d, is thus given by

= pLVOdezq

. (28)

It can be shown (Chesters, 1991) that the viscous forces in the gas can be neglected during all
but the very last stages of the process. Like van der Waals forces, the influence of these forces on
the drainage time should then be minor, since the last stages of drainage occur extremely rapidly.
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From (28) and (27), the ratio of the drainage time and the interaction time in the small Weber
number limit is given by

la_ i 3py Videg 2 iy L 6Weeq 2 (29)
t 2nm Cym0 21\ Cym 7

where C,,, is a function of d,/d, given by (22).
Eq. (29) is now generalized to any Weber number

o _ k(301 00de ) (30)
L 2n Cym0 ’

where the correction factor &, which takes account both of the effect of finite Weber number and
of the various approximations made in deriving the expressions for ¢4 and ¢, is expected to be of
order 1. The coalescence probability, P, is then given by

N0 i/t > 1,
Pc(td/tl)_{l if td/ti<1- (31)

A first check on (30) is provided by recent data on the coalescence of bubbles at a free surface in
highly purified water (Duineveld, 1994), which indicates that bubbles of radius 0.337 mm or more
bounce one or more times before coalescing. The value of k; implied by this result is obtained by
setting the RHS of (30) equal to unity, taking d; =2 x0.337 mm and d) =oc. As
dy — 00,deq — 2dy, Cyyy — 0.201 (see Table 2) and (30) thus yields

6pL Vozdl kl 6Weeq

=1/ =1. 2

0.201¢ 2z V 0.201 (32)
The rise velocity, U,,, of bubbles of radius 0.337 mm follows from the approximate relation for
the drag coefficient, Cp (Moore, 1963)

48 < 221 > e P11 U

Cp (1 -2
P~ Re Rel/? U

from which it is deduced that We.q = 0.24, if ¥} is equated ¢ with U.. (32) now yields k; = 2.5,
which is indeed of order unity.

® In reality, ¥, (the final velocity of approach, just prior to flattening) will be somewhat smaller than U, since Cym
increases as the free surface is approached. In the present case, however, this effect will be partially offset by the
buoyancy which will no longer be fully compensated by drag. No attempt is made here to refine the approximation
7y ~ Us. Gravity will likewise influence the subsequent deformation and drainage process to some extend. It can,
however, be shown that such effects are minor for a bubble of the size concerned here.
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4. Collision and coalescence rates
4.1. Collision rate

As noted in Section 1, bubbles in two-phase systems involving low-viscosity liquids are gen-
erally much larger than the Kolmogorov eddies yet smaller than the (Eulerian integral) length
scales of the energy-containing eddies. The collision between bubbles is then typically dominated
by turbulence rather than mean-velocity gradients (see Appendix A). Before focussing on tur-
bulence-induced collisions, we note that under certain circumstances bubbles have been found to
become entrapped in vortex structures, leading to higher local concentrations which favour col-
lisions. In Appendix B we show that such effects should not occur in the present experimental
studies (nor were they observed) and are not to be expected in most practical systems.

If a collision is defined as a contact which would occur were the bubbles not to deform and if
the bubble centres are supposed to follow the undisturbed flow, then the collision frequency can
be found from statistical considerations analogous to those used in the kinetic theory of gases
applied to turbulent motions in the inertial subrange. Using this approach Kuboi et al. (1972)
arrived at an expression for the number of collisions of equal particles per unit time and volume,
which they found to agree satisfactorily with visual observations of collision rates in dilute tur-
bulent emulsions

37\ 12
c— (3”) RdV, (33)

where ¥, is a turbulence velocity scale ¥; = (¢d)'?, providing a measure of the relative velocity of
two material points in the liquid a distance d apart and ¢ is the rate of dissipation of the turbulent
kinetic energy per unit mass (Hinze, 1975).

To extend the relationship (33) to a distribution of bubble sizes, we assume first that m distinct
bubble sizes exist, each occurring »; times: n; + n, + - - - + n,, = n. Eq. (33) can then be extended to

81\ & & di +d
C = (3) Z ann/< k l) (dk,dl),

where

d+ d\ "3
r + /) (34)

V(dy,d)) = (8 :

Converting this expression to a continuous distribution of bubble sizes by the transformation
n, = nP(d;) we obtain a total collision rate

/ / c(dy, do) d(dy) d(dy),
di=0 Jdy=
where

c(dy,dy) =2 ( 8;) n2P(d))P(ds) <dl er % )ZV(dl,dz). (35)
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V(d,,d>) is a measure of the relative velocity of two material points in the liquid a distance d| + d>
apart. In general, a bubble accelerates faster than the liquid which induces the fluctuation. The ratio
between the dispersed phase velocity fluctuations and the continuous phase velocity fluctuations is
indicated by the coefficient C, (see for example Eppinger, 1995; Deutsch, 1992). A second correction
to V(d,,d,) arises from the deceleration of the bubbles as they approach each other closely due to an
increase in their coefficient of virtual mass. Neglecting viscous dissipation, the kinetic energy of the
bubbles remains constant. Denoting the relative velocity at close proximity by V; and that at large
separation by V., conservation of the kinetic energy leads to (Cym), V> = (Cym), V2. For two
bubbles of equal diameter, (Cim), = 0.803 (see Table 1) while (Cyn), =0.5, yielding
(Cym)o/(Cym),, = 1.61, Vo /¥y = /1.61. For the opposite extreme case of a bubble approaching a
plane interface (d,/d, — o0) both (Cyy,), and (Cym), are a factor 4 smaller (see Table 2), once more
yielding V., /Vy, = V/1.61. For intermediate d,/d, the factor v/1.61 also constitutes a reasonable
approximation. Thus, correcting V' (d,, d,) for these effects, (34) is replaced by 7

c 4+ o\
Vid,d) = \/T%T (8 I : 2> (36)
and (35) by:
8n( 60 \* Ce'? 1 i\’
=2/— A
c(dy, dr) 3 <nd§’0> V1.61 2n6%d,d, P < n(%o))

+ (Ln(%>>2>/262 (d‘;‘b)m, (37)

where the bubble number density # has been eliminated with the help of the relation

n = 6a/(ndy,).

4.2. Coalescence rate

Eq. (30) provides an expression for #3/¢ in the case of frontal collisions (relative-velocity vector
directed along the line joining the bubble centres). In this case the coalescence probability changes
abruptly from 1 for collisions in which #3/# < 1 to 0 for those in which #4/¢ > 1, as illustrated by
the case of bubbles rising to a free surface. In the case of turbulence-driven collisions a typical
value for ¥, will be given by (36)

el < dy +dz)l/3
6 bJ
v 1.61 2

where k, is of order unity. Insertion of (38) in (30) now yields a typical value of the ratio ¢,/
during a turbulence-driven collision

W=kV(d,d) = (38)

7 In multiplying V(d,,d,) by a factor C; we implicitly assume that the bubble—turbulence field is a replica of the
liquid—turbulence field aside from a scaling factor of C;. In reality this will not be so and the scaling factor for relative
velocities over a length scale (d) + d»)/2 may be either greater or smaller than C;. In the absence of information on this
subject we take a scaling factor of C; as the best first approximation.
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fa kik, Cy (8611 +d2>1/3(3PLdeq>l/2
t 2m/1.61 2 Com0 ’

Individual values of 7; will vary within a given-¢ environment. In addition, collisions will not in
general be frontal, the angle between the relative-velocity vector and the line joining the bubble
centres varying from one collision to another. As a consequence the coalescence probability will
not change abruptly as 74/¢ passes the value of unity but vary smoothly from almost unity when
ta/t; < 1 to almost zero when #4/# > 1. Instead of attempting a theoretical derivation of P., we
will follow a semi-empirical approach and choose P, as an exponential probability function of the
ratio between #3 and ¢ (Coulaloglou and Tavlarides, 1977; Ross, 1971)

(39)

P. =~ exp(—t4/t,). (40)
Combination of (39) and (40) now yields, after rearrangement,
did; " (dr a7V
P. =exp —Kp Weo()(évnf) ( 1 2 2) , (41)
where
o) C/VT.61) :
ey — Lelledo) TGV oo Ay Ok (42)
20 ! doo 2n

After substitution of ¢(di,d,) and P, in (12), the source term ¢, of the transport equation of the
moments S, of the pdf of bubbles diameters may be calculated

K 8_713 % th81/3d$8r7/3 ](y,ﬁ',doo) (27/3 _ 2) (43)
V3 ) Vields,  2mé ’

where K. is a constant of order 1 which takes into account the approximations which have been
made in the derivation of the model. I(y, 6, dy) denotes the double integral over all bubbles sizes
of the terms which depend on d; and d;

A 00 o0 . e . . d*—i-d* 7/3
I(’)),O',d()o) :/ / <(d13 +d23)w/3 _le —d2'>< 1 5 2) Pobo
dl*:O d;:()

~((nd})*+(nd;)*) /262

did; (27 = 2)

€

d(d;)d(d;),
where
— d*—i-d* -1/6 Cvvm -
b dfdg( 12 2) ( C)dla,2

and Py, i1s a characteristic probability of coalescence (the value of P, when d| = d> = dy)

We,
P exp ( _ W) | (44
v ) g, =d,
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The diameters dyy and dsy can be eliminated from (43). Namely, from (5), the following relation
can be obtained

. 6o\ s
iy = <_> e T2,

nS,
Then Eq. (43) becomes
8/ 60\ P el . . o
‘%:&v?(?> a2 A 0,6 RS (45)
with

. 1(y,6,dy) _2 P2=29/347
f(yaJ’POO):We 2(1 /+)

In the limit 6 — 0,6 — 1 and f (7,6, Py) — Py for all y. In Fig. 3, f(y,d, Py) is plotted for
several values of 6 and for y = 1,7 = 2 and y = 4. The approximation / = Py is seen to be a good
one only for ¢ < 0.1. For ¢ < 0.3, f(y,6,Py) is well fitted by a power law

£ (7,6, Po) = g,(6)Py"", (46)

where g,(6) and ¢,(6) are quadratic functions of ¢ whose coefficients are given in Table 3. For
d > 0.3, (46) may also be used provided Py, > 0.01.

Making use of (45) and (46), the transport Eq. (7) can be numerically solved for two moments
of the bubble diameter distribution, for example S} and S,. From these two moments dy and &
may then be calculated using (10) and (11)

6 . 60.S'
%:gfwa6:h(;g (47)
2

and the space-time evolution of the pdf of the bubble diameter determined. In this way it is
possible, solving only for the transport of two moments of the pdf of bubble diameters, to obtain
its space-time variation. Using classical population balance methods, a far greater number of
equations would have to be solved.

Note that the model still contains two undetermined constants (K. and K,,) of order 1, which
reflect the approximations made in the modelling of the collision rate and the coalescence
probability. These parameters will be determined experimentally in the next section by compar-
ison of numerical simulation results with the set of experimental data obtained under microgravity
conditions.

5. Experiments on microgravity bubbly pipe flow

5.1. Description of the experimental device

Experiments were performed with the two-phase flow loop EDIA (Colin et al., 1991), under
microgravity conditions during parabolic flights aboard the Caravelle “ZERO-G” aircraft.
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Fig. 3. Values of the function ffor y =1,y =2 and y = 4.

During each parabolic flight, 30 periods of approximately 20 s of microgravity conditions were
obtained during which the level of residual acceleration experienced by the flowing fluids is less
than 3 x 10~2g, where g is the acceleration due to earth gravity. The measurements are performed
during these periods, after a waiting time which guarantees establishment of the flow.

The principal part of the installation consists of a D = 40 mm diameter, 4 m long transparent
Plexiglas pipe. The pipe is equipped with two visualization sections, one at a distance X; from
the bubble injection point, and the other at a distance L from the first visualization section (see
Table 4). These visualization sections are rectangular boxes filled with water and serve to reduce
parallax errors in flow visualizations. Flow pictures are taken through the visualization sections
with two synchronized high-speed video cameras (Kodak Ektapro EM), operating at 1000
frames/second. During the flights, pictures are recorded on SVHS videotapes. After the flights,
the video recordings are digitized by an A/D board and stored on the hard disk of a micro-
computer PC486. In spite of the use of visualizing boxes, a small distortion of the pictures
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Table 3
Values of the coefficients g, and ¢, used in (46)
f(7,6,Pyp) = g,Py, with g =1+gd+ gf(,’&z o =1+c6+ c;’&z
g/ g// c/ c/./
y=1 —-0.0531 —-0.6283 0.0374 1.3936
y=2 —-0.0411 —-0.2524 —-0.0148 1.9383
y=4 —-0.0254 —-0.2528 —0.0499 3.0813

remains. For a rigorous calibration, a calibration grid is located inside the water-filled tube and
filmed by the two cameras.

Air is injected at the inlet of the pipe through 8 peripheral holes of 1 mm diameter located at the
20 mm i.d. nozzle of a venturi. A conductivity probe made of two stainless steel flush-mounted
rings inside the pipe wall located near the outlet of the tube is used to measure the cross-sectional
averaged void fraction a. The pressure drop AP over two lengths of the tube is measured with two
Validyne pressure transducers.

5.2. Operating conditions

During several flight campaigns bubble size measurements were obtained (Colin, 1990) under
different experimental conditions. These conditions are represented in Table 4, including: an
identifier for each run (D16-118), the distance X; between the bubble injection point and the first
visualization section, the distance L between the first visualization section and the second, the
liquid and gas superficial velocities ji and jg, the cross-sectional averaged void fraction «, and the
pressure gradient dp/dz.

Table 4
Flow parameters
Run X; (m) L (m) JL (m/s) Jjo (m/s) o —dp/dz (Pa/m)
D16 0.65 2.86 0.888 0.051 0.0412 226
D18 0.65 2.86 0.881 0.129 0.0948 270
D21 0.65 2.86 1.558 0.061 0.0286 566
D24 0.65 2.86 1.521 0.129 0.0595 580
D3 0.65 2.86 0.331 0.035 0.0902 35
El4 0.65 2.86 0.956 0.05 0.0407 240
El6 0.65 2.86 0.954 0.128 0.0912 273
El17 0.65 2.86 0.937 0.219 0.15 248
E23 0.65 2.86 1.562 0.064 0.0356 552
E24 0.65 2.86 1.548 0.126 0.0643 570
E7 0.65 2.86 0.489 0.047 0.0688 88
G17 0.48 3.2 0.96 0.037 0.033 265
G29 0.48 3.2 0.76 0.134 0.119 216
G26 0.48 3.2 0.85 0.05 0.0462 252
G21 0.48 3.2 0.89 0.11 0.0869 306
117 0.48 3.2 0.862 0.124 0.092 236
H23 0.48 3.2 0.833 0.165 0.14 259

118 0.48 32 0.842 0.223 0.17 221
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5.3. Experimental results

Some visualizations of the flow are presented in Fig. 4, showing the magnitude of the coales-
cence rate in microgravity. As reported by Colin et al. (1991), a much stronger coalescence is
obtained under microgravity conditions than those found in laboratory conditions for the same
flow rates.

Bubble diameters at the inlet section are between 2 and 5 mm and decrease as the liquid flow
rate increases, due to an increase of the drag force acting on the growing bubbles, which is
favourable to bubble detachment. The bubble size grows along the pipe due to bubble co-
alescence.

Applying different image processing operations (threshold, outline closure, identification of the
different bubbles), the projected area 4; of each bubble i is determined and an average diameter d;
of the bubble is calculated d; = \/44;/n (Bongiovanni, 1996). Using the ensemble of detected
bubble sizes, an experimentally obtained distribution P.(d) of the bubble diameters can be de-
termined at the inlet and outlet visualization sections. These distributions are plotted in Fig. 5 for
four different runs. Least mean square fits by log-normal laws (1) are also given.

The error Err due to the fitting of the experimental pdf P.(d) by a log-normal law P(d) is es-
timated as follows:

p 2

Brr=, |} <Pe(d,»+1/2)Ad— /d d P(d)d(d)) , (48)

i=1

where p is the number of classes of the experimental pdf, Ad is the width of each class (=1 mm),
P.(d;11/2) 1s the percentage of bubbles with diameters between d; and d,;.

Fig. 4. Flow visualization at the pipe inlet (left) and outlet (right): digitized pictures: (a) Run D3:
JjL=0.33 m/s,« = 0.09; (b) Run E14: jL =0.96 m/s,« = 0.04; (c) Run E16: jL = 0.95 m/s, o = 0.09.
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Fig. 5. Pdf of the bubbles diameters at the pipe inlet (left) and outlet (right): (a) Run D3: jp = 0.33 m/s, o = 0.09; (b)
Run E14: j; = 0.96 m/s,o = 0.04; (c) Run E16: j; = 0.95 m/s, o = 0.09; (d) Run D21: ji = 1.56 m/s, o = 0.03.

The agreement between the log-normal distribution P(d) and the experimentally obtained
distribution P.(d) is reasonably good, taking into account the limited amount of bubbles available
for the determination of P.(d). The relatively poor agreement for the experiments D3 and E7 is
explained by the fact that the measurements are based on very few bubbles in these cases (see
Tables 5 and 6 and Fig. 5). The good agreement in the other cases supports the hypothesis made in
the theoretical model, that the pdf of particle sizes can be well represented by a log-normal law.

The detected bubble sizes can also be used to determine several characteristic diameters d,; of a
population of k bubbles

Zk y 1/y—6
do= =25 ) (49)
iy dy

The number of bubbles k required to calculate the characteristics diameters dyo, da, d3 and ds; is
fixed by an arbitrary convergence criteria of +2%
| dys(k +10) — dys(k) |
dvé (k)

The greatest value of k is required for the convergence of the Sauter diameter ds;.
The parameters dy and 6 can be calculated from the mean volumetric diameter d3, and the
Sauter diameter ds,:

d00:d3oexp<—%ln<2—z>>, 6= ln<j—;2)>. (51)

Note that the values of the different characteristic diameters are averaged across the pipe sections.

<0.02. (50)
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The results that are obtained by application of Egs. (48)—(51) at the inlet section are presented
in Table 5, and those obtained at the outlet section in Table 6: number k& of bubbles required for
the convergence of ds,, the different diameters dj, dso, d32, the r.m.s. values g, 039 of the mean

Table 5

Bubble diameters at pipe inlet
Run k d]() g10 d3() [N) d32 o d()() Err

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

D16 50 3.18 0.90 342 3.31 3.68 0.27 3.07 0.138
D18 50 3.75 0.79 3.92 3.41 4.08 0.20 3.68 0.078
D21 50 245 0.52 2.56 2.26 2.67 0.21 2.40 0.081
D24 50 2.84 0.58 2.96 2.59 3.09 0.20 2.78 0.133
D3 49 5.48 2.18 6.29 6.75 7.16 0.36 5.18 0.092
El4 96 3.12 0.81 3.32 3.03 3.53 0.25 3.03 0.092
El6 101 4.48 1.17 4.77 4.39 5.07 0.25 4.35 0.066
El17 50 4.80 1.50 5.27 5.60 5.79 0.31 4.56 0.095
E23 18 3.46 0.67 3.59 3.06 3.72 0.19 3.40 0.042
E24 50 3.41 0.89 3.63 3.28 3.84 0.24 3.32 0.056
E7 96 5.82 2.75 7.03 8.14 8.42 0.42 5.37 0.102
G17 35 4.73 0.58 4.79 3.44 4.86 0.12 4.69 0.044
G29 76 3.81 0.77 3.96 3.28 4.11 0.19 3.75 0.113
G26 50 2.99 0.77 3.18 2.95 3.38 0.24 291 0.059
G21 50 3.09 0.56 3.19 2.48 3.28 0.17 3.06 0.150
117 50 3.28 0.70 342 2.97 3.57 0.21 3.21 0.079
H23 50 3.44 0.91 3.68 3.70 3.94 0.26 3.31 0.054
118 50 3.73 0.74 3.87 3.30 4.02 0.19 3.66 0.059

Table 6

Bubble diameters at pipe outlet
Run k d]() (1)) d30 a30 d32 o d()() Err

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

D16 103 6.59 2.80 7.69 8.29 8.87 0.38 6.20 0.106
D18 102 8.74 4.15 10.62 12.44 12.80 0.43 8.02 0.082
D21 50 4.23 1.28 4.61 4.64 5.02 0.29 4.06 0.079
D24 100 5.62 1.87 6.24 6.63 6.92 0.32 5.34 0.078
D3 21 23.31 5.34 24.35 19.96 25.31 0.20 22.98 0.209
El4 125 7.20 2.62 8.06 8.16 8.94 0.32 6.91 0.192
El6 100 9.97 4.08 11.45 11.70 12.94 0.35 9.53 0.115
E17 98 10.62 5.64 13.26 14.96 16.18 0.45 9.84 0.108
E23 32 4.97 1.05 5.18 4.42 5.39 0.20 4.88 0.113
E24 126 6.02 2.52 7.04 8.06 8.19 0.39 5.60 0.099
E7 16 21.09 5.59 22.27 18.33 23.28 0.21 20.84 0.374
G17 45 6.73 1.82 7.20 6.77 7.68 0.25 6.53 0.135
G29 105 9.18 5.04 11.54 13.12 14.05 0.44 8.60 0.225
G26 100 5.97 3.07 7.34 8.05 8.78 0.42 5.60 0.187
G21 148 6.90 3.13 8.30 10.28 9.96 0.43 6.31 0.059
117 100 8.50 3.62 10.01 11.44 11.75 0.40 7.87 0.091
H23 100 8.66 3.54 9.99 10.64 11.41 0.36 8.19 0.125

118 100 9.40 4.59 11.54 13.56 14.07 0.45 8.57 0.098




A.M. Kamp et al. | International Journal of Multiphase Flow 27 (2001) 1363-1396 1387

geometric and volumetric diameters, the parameters of the log-normal law dy, 6 and the error
Err.

It is important to mention that no bubble break-up has been observed in these experiments,
which explains the high values of the bubble sizes found at the pipe outlet. This result is in
agreement with a previous study of Risso and Fabre (1998) on bubble break-up in a turbulent
field in microgravity. The authors have found that break-up of bubble of diameter d only appears
for a critical Weber number We.;. greater than 4.5 with

V2d
VVecriL = Pt ;
o

where V; being a velocity scale characteristic of the turbulence defined by V> ~ 2(sd)2/ *and ¢ is the
dissipation rate of turbulent kinetic energy. In our experiments ¢ is estimated at the pipe centre (63),
where the bubbles are mostly present, in function of the integral length scale of turbulence /. and
the friction velocity u,. u, is deduced from the pressure drop measurement (61) and /, is estimated
from (59). The critical Weber number is always much smaller than one in the experiments.

6. Simulations of the bubble sizes evolution along a pipe in microgravity

In bubbly pipe flow under microgravity conditions no bubble break-up is observed and the
changes in bubble size due to mass transfer or pressure variation are negligible. Therefore the
growth rate G can be put equal to zero and (7) simplifies to

% +V-(vS) =0, (52)
the source term ¢, being only due to coalescence. Here we approximate the bubble velocity as
being independent of bubble size and determined only by the radial position of the bubble in the
tube, so that v, = v for all y. This is a reasonable approximation for developed bubbly pipe flow
under microgravity because of the absence of buoyancy.

In this work, Eq. (52) is further simplified, assuming a steady, quasi-parallel pipe flow. The
transport equation then reduces to a one-dimensional ordinary differential equation in axial pipe
co-ordinate z

d

3 U6S) =9y, (53)

where Vg being the axial mean velocity of the gas. The effect of turbulence is thus neglected except
in relation to the source term, ¢,, which derives from turbulence-driven collisions. The bubble
concentration and bubble-diameter distribution are determined by ensemble averaging. In addi-
tion, the pressure drop Ap over the tube length is small compared with the inlet pressure
Po, Ap < po, and the influence of the gas compressibility on the gas velocity Vg can therefore be
neglected. (53) now yields
ds,

Vo——"t= @, 54

94z ; (54)
Substituting (45) in (54) for y = 1 and y = 2, the following system of linear ordinary differential
equations is obtained for the moments S; and .S,
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ds sa\'"?/6a\? Ce/ R

El - KC<?> <;> 4\/;611/ (21/3 o 2)S;‘/3f(1’67P00)’ (55)
blhg

ds st\ "2/ 6a\'"? Cel/3 X

d_zz_K°<7> <7> W(ZZB—QS;/V(Z?@PO@- (56)
. G

Discretizing the derivative on the LHS by means of a first-order Euler scheme, (55) and (56), can
be solved numerically, after modelling of the mean gas velocity Vg, the coefficient C; and the
dissipation rate of the turbulent kinetic energy e.

For flow under microgravity conditions, the mean gas velocity Vg can be estimated using the
drift flux model (Zuber and Findlay, 1965; Colin et al., 1991):

JjG Co
V = —
STy T 1— Coo

JL, (57)

where ;i is the superficial liquid velocity, jg the superficial gas velocity, « is the cross-sectional
average of the gas fraction, and Cj is a coefficient depending on the radial distributions of void
fraction and liquid velocity. An experimental value of 1.2 has been found for C in microgravity
pipe flows (Colin et al., 1991). Experimental data (Kamp, 1996) show that the radial gas fraction
distribution under microgravity conditions is rather flat in the centre of the pipe, but decreases
near the wall. In the following we will assume that the gas fraction distribution is constant in the
pipe section: o = o, where «, is the gas fraction in the centre of the pipe. This is a reasonable
approximation, although the real situation is probably somewhere between a uniform gas fraction
and a centre peaking gas fraction distribution as assumed by Colin et al. (1996).

In the case of bubbly flow under microgravity conditions, the sources of collision due to dif-
ferent bubble slip velocities, wake interactions or helicoidal/zigzag motion are not present because
of the absence of buoyancy. For the conditions under which the experiments were carried out, the
flow is turbulent and the radial variation of the axial liquid velocity u is to a reasonable ap-
proximation given by a power law

U= Uayis(1 — 2r/D)1/", (58)

where r indicates the radial position in the tube, u,y;s the liquid velocity on the pipe axis and n is a
constant, n = 7 (Schlichting, 1979). The local axial bubble velocity is also given to (58) to the first
approximation, buoyancy being absent. Since this distribution is very flat, the source of bubble
collision due to motion in mean velocity gradients, will also be even smaller than under terrestrial
conditions (where it is typically much smaller than the turbulence-induced motion for high flow
Reynolds numbers) and may be neglected.

In order to estimate whether the collisions can be induced by large eddies in the pipe flow, the
integral length scale /. of turbulence has to be estimated. This scale is approximately given by
(Hinze, 1975)

(59)

where k is the von Karman constant, k = 0.41. For D =4 cm, /[, = 8 mm, so that a bubble di-
ameter of 8 mm constitutes the upper limit at which the model is applicable.
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The modelling of the coefficient C, is still subject to discussion (Eppinger, 1995; Kamp, 1996).
C, is the ratio between the dispersed phase velocity fluctuations and the continuous phase velocity
fluctuations. The most common modelling is based on transforming the momentum equation of
the bubble to the frequency domain, based on the approach of Hinze (1975). The crossing tra-
jectories effect (Deutsch, 1992) is expected to be weak in the absence of a relative velocity of the
bubbles. Under this approximation, C; can be estimated by

2 O+ 2Pl
Y1+ T2Bv L/ dPu

where the coefficient [ is taken equal to 0.6, v is the kinematic viscosity of the liquid, and «’ is the
r.m.s value of the axial liquid velocity. It is assumed that C; is only weakly dependent on bubble size
and the diameter d is set equal to dy. The turbulent velocity scale «' is a function of the radial
position of the bubble in the pipe. An estimation of «' is given by the friction velocity u,. u, can either
be determined experimentally from measurement of the pressure gradient dp/dz in the pipe flow

| D dp

or it can be estimated from Blasius’ equation, which gives a good approximation of the wall shear
stress in microgravity bubbly pipe flows (Colin et al., 1991)

079Re 174 —y
u, = (ju + jc,)\/% with Re :”VJD, (62)
L

where Re being a mixture Reynolds number.

The rate of dissipation of the turbulent kinetic energy ¢ can be estimated using the integral
length scale of turbulence /., and the turbulent velocity of the liquid phase in the pipe centre
u =~ u,

(60)

u? 203
en (63)

In order to compare the experimentally observed coalescence behaviour to that predicted by the
model that was presented, Egs. (55) and (56) are numerically solved. For the estimation of the
friction velocity, (61) is applied, using the experimentally measured pressure gradient. The
boundary conditions for the simulations are obtained by using the values of dy, and ¢ that were
determined from the flow visualizations at the pipe inlet (see Table 5). These values are used in Eq.
(10) to calculate S; and S, at the pipe inlet.

From the calculated axial variation of S; and S, that follow from the simulations, the axial
variation of dy, and ¢ is calculated from (47). In Fig. 6, the predicted values of dy, 6, and the
Sauter diameter d;, at the pipe outlet are plotted versus the experimentally obtained values of
these parameters. From a fitting procedure, it followed that the best agreement was obtained
using the values K. = 1 and K, = 2, which indeed prove to be of order one, as it was anticipated.

For most of the runs the model is in good agreement with the experimental data. The dis-
crepancy between prediction and experimental results observed for the runs E7 and D3 is due to
the fact that for these cases large bubbles are observed. The hypothesis of turbulence driven
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Fig. 6. Comparison of predicted and experimental values of dyy, 6 and ds;.

collision of particles with diameter smaller than the integral length scale of turbulence (/. = 8 mm)
is then no longer valid.

7. Parameter study

Given the success of the coalescence model in predicting the observed coalescence behaviour, it
interesting to conduct a number of numerical experiments to investigate the influence of the
system parameters. Taking the best-fit values of the model constants determined in the previous
section (K, = 1 and K, = 2), the model is used to study the influence of three principal parameters
on the coalescence rate:

1. the cross-sectional averaged gas volume fraction «;
2. the superficial liquid velocity ji or, equivalently, the rate of dissipation of turbulent kinetic en-

ergy é&;

3. the characteristic bubble diameter dy;, at the pipe inlet.

The rate of coalescence is characterized by the relative increase in Sauter diameter ds;/d32in, d32.in
being the Sauter diameter at the pipe inlet. The numerical simulations are carried out for a pipe of
40 mm diameter and 3 m length. The superficial liquid velocities are varied between 0.2 and 2 m/s,
the mean gas fraction between 0.02 and 0.15 and the bubble characteristic diameter at the inlet
between 1 and 8§ mm.

The dependence of the coalescence rate on the initial size-distribution width, &, is not examined
in detail in most of practically relevant cases of bubbly pipe flow ¢ lies within a relatively narrow
range: between 0.15 and 0.25. In addition, the influence of the initial 6-value on the coalescence
rate proved to be minor: for the reference case of jL =1 m/s, « = 0.05 and dy i, = 3 mm, the
predicted relative increases in the Sauter diameter varies between 2.00 and 2.54 as ¢ values be-
tween 0.15-0.4. In the remaining simulations the initial value of ¢ is held constant at 0.25.

7.1. Evolution of coalescence with distance along the pipe

The evolution of the characteristic diameter dyy and the width parameter ¢ has been computed
for a pipe of 3 m length, a superficial liquid velocity j; = 1 m/s and two different values of the
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Fig. 7. Longitudinal evolution of the characteristic diameter, the width parameter and the Sauter diameter for two
mean void fraction values: o=0.1and - ---oa=0.05.

mean gas volume fraction «. The results are plotted in Fig. 7. The diameter dy, (Fig. 7(a)) increases
along the axial pipe co-ordinate, somewhat faster near the pipe inlet than near the outlet. As
would be expected, the diameter increases more rapidly for the higher gas fraction since the
collision rate of a given bubble is proportional to o.

The width parameter ¢ (Fig. 7(b)) also increases rapidly at first but approaches an asymptotic
value. Coalescence leads to a broadening of the pdf of bubble diameters. Larger bubbles appear
due to coalescence while small bubbles remain present in the flow. From Fig. 4(a) it is clear that
coalescence is still significant near the pipe outlet, while at the same time the width of the pdf no
longer increases. This can be explained by the fact that small bubbles have a greater probability of
coalescing than the larger ones, so that at some point equilibrium is reached between coalescence
of large bubbles and coalescence of small bubbles. At that point the result of bubble coalescence
on the pdf is merely a shift towards larger diameters.

The relative increase in Sauter diameter along the axial co-ordinate (Fig. 7(c)) shows a similar
tendency to that observed for the diameter dj.

7.2. Dependence of coalescence on gas volume fraction

The predicted influence of the gas volume fraction on the coalescence rate is displayed in Fig. 8.
The relative increase in the Sauter diameter over a length of 3 m, ds/d52n, 1s plotted versus the
gas volume fraction for different values of the liquid velocity, taking dy i, = 3 mm (Fig. 8(a)) and
for various values of dy;, and a given liquid velocity j;, = 1 m/s (Fig. 8(b)). The solid line in the
two figures corresponds to the same case (ji. = 1 m/s and dy i, = 3 mm). The simulations are run
in the range of validity of the model (dy < /.) which limits the ranges of the curves in the Figs. 8
and 9.

Fig. 8(a) shows that for a gas volume fraction smaller than 0.03, the relative Sauter diameter
increases approximately linearly with gas volume fraction. At higher gas volume fraction the
increase of relative Sauter diameter with increasing gas volume fraction becomes slower. The
Sauter diameter increase between pipe inlet and outlet is larger for low liquid flow rates and for
smaller bubble sizes at the injection point. A qualitative explanation of these results is provided in
Sections 7.3 and 7.4.
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Fig. 9. Influence of the characteristics inlet diameter upon the relative increase in the Sauter diameter for j; = 1 m/s.

7.3. Dependence of coalescence on liquid flow rate

The influence of the superficial liquid velocity ji on the relative increase in Sauter diameter is
threefold. An increasing liquid flow rate:
e diminishes the residence time of the bubbles inside the pipe;
e decreases the coalescence probability because of an increase in the Weber number, via an in-
crease in ¢;
e increases the collision rate through an increase of the dissipation rate of turbulent kinetic en-

ergy, &,



A.M. Kamp et al. | International Journal of Multiphase Flow 27 (2001) 1363-1396 1393

To the first approximation the first and third effects compensate each other ® and the second effect
accordingly dominates (Fig. 8(a)). A similar result was obtained experimentally in vertical flows in
the presence of gravity where coalescence rates were observed to be much lower than under
microgravity conditions despite higher collision rates as a result of increased relative bubble ve-
locities (Kamp, 1996).

7.4. Dependence of coalescence on the bubble diameter

The influence of the mean bubble diameter dy i, at the pipe inlet on the relative increase in
Sauter diameter at the pipe outlet in shown in Fig. 9 for a pipe length of 3 m and a superficial
liquid velocity of 1 m/s. Bubble size proves to be an important parameter in the coalescence rate:
small bubbles tend to coalesce much more than large bubbles. The ratio ds,/ds,;, is approximately
inversely proportional to a power of dyn.

8. Conclusions

The model developed involves two steps, which are essentially separable. In the first, the ex-
pressions put forward earlier for the collision frequency and coalescence probability of equal
bubbles during turbulence-driven, high-Reynolds-number collisions (Chesters, 1991) are extended
to unequal bubbles and to take account of bubble-turbulence and bubble-bubble interactions. In
the second, the resulting expression for the coalescence rate is used to derive source terms in the
transport equations for the moment densities, S,, which can readily be evaluated locally within a
CFD code. The result is an extremely compact framework capable of providing predictions of the
evolution of bubble size distributions in space and time at the expense of only two additional
scalar transport equations. The predictions of the model are compared with experimental data
obtained in cases in which the collisions between bubbles are only turbulence induced. This
condition has been satisfied in bubbly pipe flows under microgravity conditions for which data
concerning the evolution of bubble diameter distribution along the pipe are presented. The model
assumes the bubbles to be almost spherical and smaller than the integral length scale of turbu-
lence, I., while collisions are assumed to arise primarily from liquid turbulence. In the microg-
ravity pipe flows concerned the approximation of spherical bubbles proves acceptable up to
bubble diameters of 20 mm. The requirement that d < /. is more restrictive, /. being around 8
mm. The model includes two unknown constants of order unity which represent approximations
that were made in the development of the model. Comparing the model predictions with the
experimental data, the following values for these constants were obtained: K. =1 and K, = 2.
Using these values, the model is capable of predicting bubble size pdf at the pipe outlet over the
investigated range of liquid flow rate, gas flow rate and bubble size pdf at injection.

To survey the global trends predicted by the model a parametric study has been conducted. An
important result of this study is the prediction that bubble growth due to coalescence between

8 Ignoring the weak Re-dependence of u,, and bearing in mind that jg < ji, (62) indicates that u, and hence (via (35),
(36) and (63)) the collision rate varies as ji, whereas the residence time varies as 1/j.. To the first approximation,
therefore, the collision rate per unit axial distance for a given bubble size is almost independent of ji .
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inlet and outlet diminishes with increasing liquid flow rate, due primarily to a reduction coales-
cence probability arising from an increase in collision velocities.

The successful prediction of coalescence in pipe flows under microgravity conditions is an
important step toward a complete understanding of the evolution of bubble size in these flows
(better prediction of the transition to slug flow) but also in more complex flows where gravity
plays an important role. Indeed, in presence of buoyancy, the coalescence mechanisms are much
harder to model because the velocity difference between bubbles of different sizes is another source
of bubble collisions. In vertical upward flow the bubbles are furthermore concentrated in regions
of high velocity gradients. Likewise, incorporation of the influence of surfactant is straightfor-
ward, given models for their effect on film drainage. These effects add to that of turbulence, which
has been clearly highlighted in the present microgravity experiments.
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Appendix A. Relative contributions of turbulence and mean-flow velocity gradients to bubble
collision velocities

The starting point for an estimation of bubble collision velocities is the velocity variation in the
continuous phase over a distance, /, of the order of (d; + d,)/2. The order of magnitude of the
contribution of inertial-subrange turbulence to this velocity variation, V., is given by (34):

Vturb ~ (86)1/3- (Al)
The corresponding contribution, Ve, of mean-velocity variation is given by
Vinean ~ (V/L)Z, (A.2)

where V and L denote a characteristic system velocity and length scale. For large system Reynolds
numbers ¢ is furthermore related to V and L by

e=kV3/L, (A.3)

where k depends on the system geometry, varying from order 1073 for wall-bounded flows to
order 107! for free flows. Combination of (A.1)~(A.3) now yields

Vturb 1/3 L 23
— =k - . A4
I/Inean Z ( )

In most high Reynolds number industrial systems, such as stirred tanks, L is two or more
orders of magnitude larger than / and the influence of mean velocity gradients should be minor. In
the experiments reported in Section 5, this approximation is poorer although in the centre region
of the tube where most of the bubbles can be found, the velocity is almost homogeneous so that
(A.2) considerably overestimates Vpean.
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Appendix B. Bubble entrapment in vortices

Consider a vortex whose centre travels at the mean velocity of the liquid. The centripetal ac-
celeration of the liquid within the vortex is of order U? /L, where U, and L, denote the velocity and
length scales of the vortex. The centripetal acceleration of a bubble located within the vortex will
be therefore of order 3UV2 /L. ° On entering the vortex, the velocity of the bubble relative to the
vortex centre will be the sum of its mean velocity, U, relative to the liquid and its fluctuating
velocity C V. As these velocities are uncorrelated, their average magnitude will be
[U? + (CVuw)']'/* and the centripetal acceleration of the bubble will be given by
[U% 4 (CViur)*]/Re, where R, denotes the radius of curvature of the bubble trajectory. Equating
these two expressions for the centripetal acceleration of the bubble we obtain

(U2 + (CiFiuns)*)/Re = 3U2 /L., (B.1)
For bubble entrapment to occur R, must be smaller than the radius of the vortex

R. < L,/2. (B.2)
From (B.1) and (B.2) the criterion for entrapment is thus

U? + (CVar)” < 3U2/2. (B.3)
If the vortex corresponds to an energy-containing eddy, U, = V1, and (B.3) becomes

(U +C? < 3)2, (B.4)

where U’ denotes the ratio U/ V. In the present experimental study gravity is absent and U’ is
negligible so that (B.4) reduces to C? < 3/2. The measured C-values were, however, much larger
than unity so that entrapment is not expected, nor was it observed. In most practical systems
involving large bubble Reynolds numbers U is of the order of 10~! m/s or more and U’ of the
order of unity. Since C; > 1, (B.4) is then automatically satisfied.

For eddies/vortices either smaller or larger than the energy-containing eddies, U, < Vi, and
(B.3) is satisfied even more readily.
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